An equivariant pullback structure of trimmable graph $C^*$-algebras
نویسندگان
چکیده
To unravel the structure of fundamental examples studied in noncommutative topology, we prove that graph $C^$-algebra $C^(E)$ a trimmable $E$ is $U(1)$-equivariantly isomorphic to pullback subgraph $C^(E'')$ and functions on circle tensored with another $C^(E')$. This allows us approach K-theory fixed-point subalgebra $C^(E)^{U(1)}$ through (typically simpler) $C^$-algebras $C^(E')$, $C^(E'')^{U(1)}$. As graphs, consider one-loop extensions standard graphs encoding respectively Cuntz algebra $\mathcal{O}\_2$ Toeplitz $\mathcal{T}$. Then analyze equivariant structures yielding Vaksman–Soibelman quantum sphere $S^{2n+1}\_q$ lens space $L\_q^3(l;1,l)$, respectively.
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولSubalgebras of graph C*-algebras
We prove a spectral theorem for bimodules in the context of graph C∗-algebras. A bimodule over a suitable abelian algebra is determined by its spectrum (i.e., its groupoid partial order) iff it is generated by the Cuntz– Krieger partial isometries which it contains iff it is invariant under the gauge automorphisms. We study 1-cocycles on the Cuntz–Krieger groupoid associated with a graph C∗-alg...
متن کاملC*-algebras of Graph Products
For certain graphs, we can associate a universal C*-algebra, which encodes the information of the graph algebraically. In this paper we examine the relationships between products of graphs and their associated C*-algebras. We present the underlying theory of associating a C*-algebra to a direct graph as well as to a higher rank graph. We then provide several isomorphisms relating C*-algebras of...
متن کاملIdeal Structure of Graph Algebras
We classify the gauge-invariant ideals in the C∗-algebras of infinite directed graphs, and describe the quotients as graph algebras. We then use these results to identify the gauge-invariant primitive ideals in terms of the structural properties of the graph, and describe the K-theory of the C∗-algebras of arbitrary infinite graphs.
متن کاملCoactions of Hopf-C-algebras and equivariant E-theory
We define and study an equivariant E-theory with respect to coactions of Hopf C-algebras; we prove the Baaj-Skandalis duality in this setting. We show that the corresponding equivariant KK-theory of Baaj and Skandalis enjoys an universal property. In the appendix, we look at the different ways of expressing equivariant stability for a functor, and prove an equivariant BrownGreen-Rieffel stabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Noncommutative Geometry
سال: 2022
ISSN: ['1661-6960', '1661-6952']
DOI: https://doi.org/10.4171/jncg/421